Large gaps between consecutive zeros, on the critical line, of the Riemann zeta-function
Autor: | Bredberg, Johan |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that for any sufficiently large $T,$ there exists a subinterval of $[T,2T]$ of length at least $2.766 \times \frac{2\pi}{\log{T}},$ in which the function $t \mapsto \zeta(1/2 + it)$ has no zeros. Comment: Minor typos fixed. Also, now we first discuss our goal and then examine some needed integral-results. The actual maths is essentially unchanged |
Databáze: | arXiv |
Externí odkaz: |