Balanced metrics on homogeneous vector bundles

Autor: Mossa, Roberto
Rok vydání: 2011
Předmět:
Zdroj: Int. J. Geom. Methods Mod. Phys. 8 (2011), no. 7, 1433-1438
Druh dokumentu: Working Paper
DOI: 10.1142/S0219887811005841
Popis: Let $E\rightarrow M$ be a holomorphic vector bundle over a compact Kaehler manifold $(M, \omega)$ and let $E=E_1\oplus... \oplus E_m\rightarrow M$ be its decomposition into irreducible factors. Suppose that each $E_j$ admits a $\omega$-balanced metric in Donaldson-Wang terminology. In this paper we prove that $E$ admits a unique $\omega$-balanced metric if and only if $\frac{r_j}{N_j}=\frac{r_k}{N_k}$ for all $j, k=1, ..., m$, where $r_j$ denotes the rank of $E_j$ and $N_j=\dim H^0(M, E_j)$. We apply our result to the case of homogeneous vector bundles over a rational homogeneous variety $(M, \omega)$ and we show the existence and rigidity of balanced Kaehler embedding from $(M, \omega)$ into Grassmannians.
Comment: 5 pages
Databáze: arXiv