Generalized Hamilton's Principle with Fractional Derivatives

Autor: Atanackovic, Teodor M., Konjik, Sanja, Oparnica, Ljubica, Pilipovic, Stevan
Rok vydání: 2011
Předmět:
Zdroj: J. Phys. A, Math. Theor., 43, 255203(12pp), 2010
Druh dokumentu: Working Paper
DOI: 10.1088/1751-8113/43/25/255203
Popis: We generalize Hamilton's principle with fractional derivatives in Lagrangian $L(t,y(t),{}_0D_t^\al y(t),\alpha)$ so that the function $y$ and the order of fractional derivative $\alpha$ are varied in the minimization procedure. We derive stationarity conditions and discuss them through several examples.
Databáze: arXiv