Inverse spectral problems for Dirac operators on a finite interval
Autor: | Mykytyuk, Ya. V., Puyda, D. V. |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | J. Math. Anal. Appl. 386 (2012) 177-194 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jmaa.2011.07.061 |
Popis: | We consider the direct and inverse spectral problems for Dirac operators that are generated by the differential expressions $$ \mathfrak t_q:=\frac{1}{i}[I&0 0&-I]\frac{d}{dx}+[0&q q^*&0] $$ and some separated boundary conditions. Here $q$ is an $r\times r$ matrix-valued function with entries belonging to $L_2((0,1),\mathbb C)$ and $I$ is the identity $r\times r$ matrix. We give a complete description of the spectral data (eigenvalues and suitably introduced norming matrices) for the operators under consideration and suggest an algorithm of reconstructing the potential $q$ from the corresponding spectral data. Comment: 23 pages |
Databáze: | arXiv |
Externí odkaz: |