Inverse spectral problems for Dirac operators on a finite interval

Autor: Mykytyuk, Ya. V., Puyda, D. V.
Rok vydání: 2011
Předmět:
Zdroj: J. Math. Anal. Appl. 386 (2012) 177-194
Druh dokumentu: Working Paper
DOI: 10.1016/j.jmaa.2011.07.061
Popis: We consider the direct and inverse spectral problems for Dirac operators that are generated by the differential expressions $$ \mathfrak t_q:=\frac{1}{i}[I&0 0&-I]\frac{d}{dx}+[0&q q^*&0] $$ and some separated boundary conditions. Here $q$ is an $r\times r$ matrix-valued function with entries belonging to $L_2((0,1),\mathbb C)$ and $I$ is the identity $r\times r$ matrix. We give a complete description of the spectral data (eigenvalues and suitably introduced norming matrices) for the operators under consideration and suggest an algorithm of reconstructing the potential $q$ from the corresponding spectral data.
Comment: 23 pages
Databáze: arXiv