Combinatorial Methods for Detecting Surface Subgroups in Right-Angled Artin Groups

Autor: Bell, Robert W.
Rok vydání: 2010
Předmět:
Druh dokumentu: Working Paper
Popis: We give a short proof of the following theorem of Sang-hyun Kim: if $A(\Gamma)$ is a right-angled Artin group with defining graph $\Gamma$, then $A(\Gamma)$ contains a hyperbolic surface subgroup if $\Gamma$ contains an induced subgraph $\bar{C}_n$ for some $n \geq 5$, where $\bar{C}_n$ denotes the complement graph of an $n$-cycle. Furthermore, we give a new proof of Kim's co-contraction theorem.
Comment: PDF-LaTeX, 6 pages with 1 figure
Databáze: arXiv