A convergent series representation for the density of the supremum of a stable process
Autor: | Hubalek, Friedrich, Kuznetsov, Alexey |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Electron. Commun. Probab., 16, no. 8, 84-95, 2011 |
Druh dokumentu: | Working Paper |
DOI: | 10.1214/ECP.v16-1601 |
Popis: | We study the density of the supremum of a strictly stable L\'evy process. We prove that for almost all values of the index $\alpha$ -- except for a dense set of Lebesgue measure zero -- the asymptotic series which were obtained in A. Kuznetsov (2010) "On extrema of stable processes" are in fact absolutely convergent series representations for the density of the supremum. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |