A convergent series representation for the density of the supremum of a stable process

Autor: Hubalek, Friedrich, Kuznetsov, Alexey
Rok vydání: 2010
Předmět:
Zdroj: Electron. Commun. Probab., 16, no. 8, 84-95, 2011
Druh dokumentu: Working Paper
DOI: 10.1214/ECP.v16-1601
Popis: We study the density of the supremum of a strictly stable L\'evy process. We prove that for almost all values of the index $\alpha$ -- except for a dense set of Lebesgue measure zero -- the asymptotic series which were obtained in A. Kuznetsov (2010) "On extrema of stable processes" are in fact absolutely convergent series representations for the density of the supremum.
Comment: 12 pages
Databáze: arXiv