Multi-component generalizations of the {CH} equation: Geometrical Aspects, Peakons and Numerical Examples

Autor: Holm, D. D., Ivanov, R. I.
Rok vydání: 2010
Předmět:
Zdroj: J. Phys. A: Math. Theor. 43 No 49 (10 December 2010) 492001 (20pp)
Druh dokumentu: Working Paper
DOI: 10.1088/1751-8113/43/49/492001
Popis: The Lax pair formulation of the two-component Camassa-Holm equation (CH2) is generalized to produce an integrable multi-component family, CH(n,k), of equations with $n$ components and $1\le |k|\le n$ velocities. All of the members of the CH(n,k) family show fluid-dynamics properties with coherent solitons following particle characteristics. We determine their Lie-Poisson Hamiltonian structures and give numerical examples of their soliton solution behaviour. We concentrate on the CH(2,k) family with one or two velocities, including the CH(2,-1) equation in the Dym position of the CH2 hierarchy. A brief discussion of the CH(3,1) system reveals the underlying graded Lie-algebraic structure of the Hamiltonian formulation for CH(n,k) when $n\ge3$.
Comment: 19 pages 5 figures comments are welcome
Databáze: arXiv