Game semantics for first-order logic
Autor: | Laurent, Olivier |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Logical Methods in Computer Science, Volume 6, Issue 4 (October 20, 2010) lmcs:1130 |
Druh dokumentu: | Working Paper |
DOI: | 10.2168/LMCS-6(4:3)2010 |
Popis: | We refine HO/N game semantics with an additional notion of pointer (mu-pointers) and extend it to first-order classical logic with completeness results. We use a Church style extension of Parigot's lambda-mu-calculus to represent proofs of first-order classical logic. We present some relations with Krivine's classical realizability and applications to type isomorphisms. |
Databáze: | arXiv |
Externí odkaz: |