Recovering Fourier coefficients of modular forms and factoring of integers
Autor: | Preobrazhenskii, Sergei N. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | It is shown that if a function defined on the segment [-1,1] has sufficiently good approximation by partial sums of the Legendre polynomial expansion, then, given the function's Fourier coefficients $c_n$ for some subset of $n\in[n_1,n_2]$, one may approximately recover them for all $n\in[n_1,n_2]$. As an application, a new approach to factoring of integers is given. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |