Origin of hyperdiffusion in generalized Brownian motion
Autor: | Siegle, P., Goychuk, I., Hanggi, P. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Phys. Rev. Lett. 105, 100602 (2010) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevLett.105.100602 |
Popis: | We study a minimal non-Markovian model of superdiffusion which originates from long-range velocity correlations within the generalized Langevin equation (GLE) approach. The model allows for a three-dimensional Markovian embedding. The emergence of a transient hyperdiffusion, $< \Delta x^2(t)> \propto t^{2+\lambda}$, with $\lambda\sim 1-3$ is detected in tilted washboard potentials before it ends up in a ballistic asymptotic regime. We relate this phenomenon to a transient heating of particles $T_{\rm kin}(t)\propto t^\lambda$ from the thermal bath temperature $T$ to some maximal kinetic temperature $T_{\rm max}$. This hyperdiffusive transient regime ceases when the particles arrive at the maximal kinetic temperature. Comment: Phys. Rev. Lett., in press |
Databáze: | arXiv |
Externí odkaz: |