An FPTAS for Bargaining Networks with Unequal Bargaining Powers

Autor: Kanoria, Yashodhan
Rok vydání: 2010
Předmět:
Zdroj: Lecture Notes in Computer Science 6484 Springer (2010) 282-293
Druh dokumentu: Working Paper
Popis: Bargaining networks model social or economic situations in which agents seek to form the most lucrative partnership with another agent from among several alternatives. There has been a flurry of recent research studying Nash bargaining solutions (also called 'balanced outcomes') in bargaining networks, so that we now know when such solutions exist, and also that they can be computed efficiently, even by market agents behaving in a natural manner. In this work we study a generalization of Nash bargaining, that models the possibility of unequal 'bargaining powers'. This generalization was introduced in [KB+10], where it was shown that the corresponding 'unequal division' (UD) solutions exist if and only if Nash bargaining solutions exist, and also that a certain local dynamics converges to UD solutions when they exist. However, the bound on convergence time obtained for that dynamics was exponential in network size for the unequal division case. This bound is tight, in the sense that there exists instances on which the dynamics of [KB+10] converges only after exponential time. Other approaches, such as the one of Kleinberg and Tardos, do not generalize to the unsymmetrical case. Thus, the question of computational tractability of UD solutions has remained open. In this paper, we provide an FPTAS for the computation of UD solutions, when such solutions exist. On a graph G=(V,E) with weights (i.e. pairwise profit opportunities) uniformly bounded above by 1, our FPTAS finds an \eps-UD solution in time poly(|V|,1/\eps). We also provide a fast local algorithm for finding \eps-UD solution, providing further justification that a market can find such a solution.
Comment: 18 pages; Amin Saberi (Ed.): Internet and Network Economics - 6th International Workshop, WINE 2010, Stanford, CA, USA, December 13-17, 2010. Proceedings.
Databáze: arXiv