Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices
Autor: | Burda, Z., Jarosz, A., Livan, G., Nowak, M. A., Swiech, A. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Phys. Rev. E 82, 061114 (2010) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevE.82.061114 |
Popis: | We derive exact analytic expressions for the distributions of eigenvalues and singular values for the product of an arbitrary number of independent rectangular Gaussian random matrices in the limit of large matrix dimensions. We show that they both have power-law behavior at zero and determine the corresponding powers. We also propose a heuristic form of finite size corrections to these expressions which very well approximates the distributions for matrices of finite dimensions. Comment: 13 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |