Compact-like abelian groups without non-trivial quasi-convex null sequences
Druh dokumentu: | Working Paper |
---|---|
DOI: | 10.1016/j.jpaa.2013.05.001 |
Přístupová URL adresa: | http://arxiv.org/abs/1007.1927 |
Přírůstkové číslo: | edsarx.1007.1927 |
Autor: | Dikranjan, D., Lukács, Gábor |
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | J. Pure Appl. Algebra 218 (2014), 135-147 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jpaa.2013.05.001 |
Popis: | In this paper, we study precompact abelian groups G that contain no sequence {x_n} such that {0} \cup {\pm x_n : n \in N} is infinite and quasi-convex in G, and x_n --> 0. We characterize groups with this property in the following classes of groups: (a) bounded precompact abelian groups; (b) minimal abelian groups; (c) totally minimal abelian groups; (d) \omega-bounded abelian groups. We also provide examples of minimal abelian groups with this property, and show that there exists a minimal pseudocompact abelian group with the same property; furthermore, under Martin's Axiom, the group may be chosen to be countably compact minimal abelian. Comment: Final version |
Databáze: | arXiv |
Externí odkaz: |