On the number of zeros of Melnikov functions

Autor: Novikov, Dmitry, Benditkis, Sergey
Rok vydání: 2010
Předmět:
Druh dokumentu: Working Paper
Popis: We provide an effective uniform upper bond for the number of zeros of the first non-vanishing Melnikov function of a polynomial perturbations of a planar polynomial Hamiltonian vector field. The bound depends on degrees of the field and of the perturbation, and on the order $k$ of the Melnikov function. The generic case $k=1$ was considered by Binyamini, Novikov and Yakovenko (\cite{BNY-Inf16}). The bound follows from an effective construction of the Gauss-Manin connection for iterated integrals.
Databáze: arXiv