Algebraic entropy of shift endomorphisms on abelian groups
Autor: | Akhavin, Maryam, Shirazi, Fatemah Ayatollah Zadeh, Dikranjan, Dikran, Bruno, Anna Giordano, Hosseini, Arezoo |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Quaest. Math. 32 (2009) no. 4, 529-550 |
Druh dokumentu: | Working Paper |
Popis: | For every finite-to-one map $\lambda:\Gamma\to\Gamma$ and for every abelian group $K$, the generalized shift $\sigma_\lambda$ of the direct sum $\bigoplus_\Gamma K$ is the endomorphism defined by $(x_i)_{i\in\Gamma}\mapsto(x_{\lambda(i)})_{i\in\Gamma}$. In this paper we analyze and compute the algebraic entropy of a generalized shift, which turns out to depend on the cardinality of $K$, but mainly on the function $\lambda$. We give many examples showing that the generalized shifts provide a very useful universal tool for producing counter-examples. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |