Curvature estimates for the level set of spatial quasiconcave solutions to a class of parabolic equations

Autor: Chen, Chuanqiang, Shi, Shujun
Rok vydání: 2010
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1007/s11425-011-4277-7
Popis: We prove a constant rank theorem for the second fundamental form of the spatial convex level surfaces of solutions to equations $u_t=F(\n^2u, \n u, u, t)$ under a structural condition, and give a geometric lower bound of the principal curvature of the spatial level surfaces.
Comment: 22 pages
Databáze: arXiv