Curvature estimates for the level set of spatial quasiconcave solutions to a class of parabolic equations
Autor: | Chen, Chuanqiang, Shi, Shujun |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s11425-011-4277-7 |
Popis: | We prove a constant rank theorem for the second fundamental form of the spatial convex level surfaces of solutions to equations $u_t=F(\n^2u, \n u, u, t)$ under a structural condition, and give a geometric lower bound of the principal curvature of the spatial level surfaces. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |