Adsorption structures of phenol on the Si(001)-(2 \times 1) surface calculated using density functional theory
Autor: | Johnston, Karen, Gulans, Andris, Verho, Tuukka, Puska, Martti J. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Phys. Rev. B 81 235428 (2010) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevB.81.235428 |
Popis: | Several dissociated and two non-dissociated adsorption structures of the phenol molecule on the Si(001)-(2 \times 1) surface are studied using density functional theory with various exchange and correlation functionals. The relaxed structures and adsorption energies are obtained and it is found that the dissociated structures are energetically more favourable than the non-dissociated structures. However, the ground state energies alone do not determine which structure is obtained experimentally. To elucidate the situation core level shift spectra for Si 2p and C 1s states are simulated and compared with experimentally measured spectra. Several transition barriers were calculated in order to determine which adsorption structures are kinetically accessible. Based on these results we conclude that the molecule undergoes the dissociation of two hydrogen atoms on adsorption. Comment: 11 pages, 6 figures |
Databáze: | arXiv |
Externí odkaz: |