Extremes of multidimensional Gaussian processes

Autor: Dębicki, Krzysztof, Kosiński, Kamil Marcin, Mandjes, Michel, Rolski, Tomasz
Rok vydání: 2010
Předmět:
Zdroj: Stochastic Processes and their Applications 120 (2010) 2289-2301
Druh dokumentu: Working Paper
DOI: 10.1016/j.spa.2010.08.010
Popis: This paper considers extreme values attained by a centered, multidimensional Gaussian process $X(t)= (X_1(t),\ldots,X_n(t))$ minus drift $d(t)=(d_1(t),\ldots,d_n(t))$, on an arbitrary set $T$. Under mild regularity conditions, we establish the asymptotics of \[\log\mathbb P\left(\exists{t\in T}:\bigcap_{i=1}^n\left\{X_i(t)-d_i(t)>q_iu\right\}\right),\] for positive thresholds $q_i>0$, $i=1,\ldots,n$, and $u\to\infty$. Our findings generalize and extend previously known results for the single-dimensional and two-dimensional cases. A number of examples illustrate the theory.
Databáze: arXiv