MAESTRO: An Adaptive Low Mach Number Hydrodynamics Algorithm for Stellar Flows
Autor: | Nonaka, A., Almgren, A. S., Bell, J. B., Lijewski, M. J., Malone, C. M., Zingale, M. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/0067-0049/188/2/358 |
Popis: | Many astrophysical phenomena are highly subsonic, requiring specialized numerical methods suitable for long-time integration. In a series of earlier papers we described the development of MAESTRO, a low Mach number stellar hydrodynamics code that can be used to simulate long-time, low-speed flows that would be prohibitively expensive to model using traditional compressible codes. MAESTRO is based on an equation set derived using low Mach number asymptotics; this equation set does not explicitly track acoustic waves and thus allows a significant increase in the time step. MAESTRO is suitable for two- and three-dimensional local atmospheric flows as well as three-dimensional full-star flows. Here, we continue the development of MAESTRO by incorporating adaptive mesh refinement (AMR). The primary difference between MAESTRO and other structured grid AMR approaches for incompressible and low Mach number flows is the presence of the time-dependent base state, whose evolution is coupled to the evolution of the full solution. We also describe how to incorporate the expansion of the base state for full-star flows, which involves a novel mapping technique between the one-dimensional base state and the Cartesian grid, as well as a number of overall improvements to the algorithm. We examine the efficiency and accuracy of our adaptive code, and demonstrate that it is suitable for further study of our initial scientific application, the convective phase of Type Ia supernovae. Comment: Accepted to Astrophysical Journal Suppliment (http://iop.org). 56 pages, 15 figures. |
Databáze: | arXiv |
Externí odkaz: |