Autor: |
Eftekharinasab, Kaveh |
Rok vydání: |
2010 |
Předmět: |
|
Zdroj: |
Ukrainian mathematical Journal, vol 64, no 12, pp. 1634-- 1641 (2010) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1007/s11253-011-0478-z |
Popis: |
In this paper we prove an infinite-dimensional version of Sard's theorem for Fr\'{e}chet manifolds. Let $ M $ and $ N $ be bounded Fr\'{e}chet manifolds such that the topologies of their model Fr\'{e}chet spaces are defined by metrics with absolutely convex balls. Let $ f: M \rightarrow N $ be an $ MC^k$-Lipschitz-Fredholm map with $ k > \max \lbrace {\Ind f,0} \rbrace $. Then the set of regular values of $ f $ is residual in $ N $. |
Databáze: |
arXiv |
Externí odkaz: |
|