Slowly Changing Vectors and the Asymptotic Finite-Dimensionality of an Operator Semigroup
Autor: | Storozhuk, K. V. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Siberian Math. J., Vol. 50, No. 4, pp. 738-741, 2009 |
Druh dokumentu: | Working Paper |
Popis: | Let $T:X\to X$ be a linear power bounded operator on Banach space. Let $X_0$ is a subspace of vectors tending to zero under iterating of $T$. We prove that if $X_0$ is not equal to $X$ then there exists $\lambda$ in Sp(T) such that, for every $\epsilon>0$, there is $x$ such that $|Tx-\lambda x|<\epsilon $ but $|T^nx|>1-\epsilon$ for all $n$. The technique we develop enables us to establish that if $X$ is reflexive and there exists a compactum $K$ in $X$ such that for every norm-one $x\in X$ $\rho\{T^nx, K\}<\alpha (T)<1$ for some $n=n_1, n_2,...$ then $codim(X_0)<\infty$. The results hold also for a one-parameter semigroup. Comment: 5 pages |
Databáze: | arXiv |
Externí odkaz: |