Inviscid limit for the derivative Ginzburg-Landau equation with small data in higher spatial dimensions

Autor: Han, Lijia, Wang, Baoxiang, Guo, Boling
Rok vydání: 2010
Předmět:
Druh dokumentu: Working Paper
Popis: We study the inviscid limit for the Cauchy problem of derivative Ginzburg-Landau equation in higher dimension space n>2. We show that it is global well-posed and its solution will converge to that of derivative Schrodinger equation.
Databáze: arXiv