Inviscid limit for the derivative Ginzburg-Landau equation with small data in higher spatial dimensions
Autor: | Han, Lijia, Wang, Baoxiang, Guo, Boling |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the inviscid limit for the Cauchy problem of derivative Ginzburg-Landau equation in higher dimension space n>2. We show that it is global well-posed and its solution will converge to that of derivative Schrodinger equation. |
Databáze: | arXiv |
Externí odkaz: |