On monomorphic topological functors with finite supports

Autor: Banakh, Taras, Martynenko, Marta, Zarichnyi, Michael
Rok vydání: 2010
Předmět:
Zdroj: Carpathian Math. Publ. 4:1 (2012) 4-12
Druh dokumentu: Working Paper
Popis: We prove that a monomorphic functor $F:Comp\to Comp$ with finite supports is epimorphic, continuous, and its maximal $\emptyset$-modification $F^\circ$ preserves intersections. This implies that a monomorphic functor $F:Comp\to Comp$ of finite degree $deg F\le n$ preserves (finite-dimensional) compact ANR's if the spaces $F\emptyset$, $F^\circ\emptyset$, and $Fn$ are finite-dimensional ANR's. This improves a known result of Basmanov.
Comment: 6 pages
Databáze: arXiv