The Dirac operator on generalized Taub-NUT spaces
Autor: | Moroianu, Andrei, Moroianu, Sergiu |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Communications in Mathematical Physics 305, 641-656 (2011) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00220-011-1263-4 |
Popis: | We find sufficient conditions for the absence of harmonic $L^2$ spinors on spin manifolds constructed as cone bundles over a compact K\"ahler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vi\csinescu and the second author. Comment: Final version, 16 pages |
Databáze: | arXiv |
Externí odkaz: |