A Derivation Of The Scalar Propagator In A Planar Model In Curved Space

Autor: Kamath, S. G.
Rok vydání: 2010
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1063/1.3460197
Popis: Given that the free massive scalar propagator in 2 + 1 dimensional Euclidean space is $D(x-y)=\frac{1}{4\pi \rho} 0.25cm e^{-m \rho} $ with $\rho^2=(x-y)^2$ we present the counterpart of $D(x-y)$ in curved space with a suitably modified version of the Antonsen - Bormann method instead of the familiar Schwinger - de Witt proper time approach, the metric being defined by the rotating solution of Deser et al. of the Einstein field equations associated with a single massless spinning particle located at the origin.
Comment: 4pages,Presented at FFP10,Nov.24 - 26,2009,UWA,Perth,To appear in AIP Conference Proceedings
Databáze: arXiv