A Derivation Of The Scalar Propagator In A Planar Model In Curved Space
Autor: | Kamath, S. G. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1063/1.3460197 |
Popis: | Given that the free massive scalar propagator in 2 + 1 dimensional Euclidean space is $D(x-y)=\frac{1}{4\pi \rho} 0.25cm e^{-m \rho} $ with $\rho^2=(x-y)^2$ we present the counterpart of $D(x-y)$ in curved space with a suitably modified version of the Antonsen - Bormann method instead of the familiar Schwinger - de Witt proper time approach, the metric being defined by the rotating solution of Deser et al. of the Einstein field equations associated with a single massless spinning particle located at the origin. Comment: 4pages,Presented at FFP10,Nov.24 - 26,2009,UWA,Perth,To appear in AIP Conference Proceedings |
Databáze: | arXiv |
Externí odkaz: |