One analytic form for four branches of the ABCD matrix
Autor: | Baskal, S., Kim, Y. S. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | J. Mod. Opt. [57], 1251-1269 (2010) |
Druh dokumentu: | Working Paper |
DOI: | 10.1080/09500340903576433 |
Popis: | It is not always possible to diagonalize the optical $ABCD$ matrix, but it can be brought into one of the four Wigner matrices by a similarity transformation. It is shown that the four Wigner matrices can be combined into one matrix with four branches. This result is illustrated in terms of optical activities, laser cavities, and multilayer optics. Comment: 21 pages, 3 figures, published in Special Issue: Festschrift in Memory of Lorenzo M. Narducci |
Databáze: | arXiv |
Externí odkaz: |