Ring-type singular solutions of the biharmonic nonlinear Schrodinger equation
Autor: | Baruch, Guy, Fibich, Gadi, Mandelbaum, Elad |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Nonlinearity, Volume 23, Number 11, pp. 2867, 2010 |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/0951-7715/23/11/008 |
Popis: | We present new singular solutions of the biharmonic nonlinear Schrodinger equation in dimension d and nonlinearity exponent 2\sigma+1. These solutions collapse with the quasi self-similar ring profile, with ring width L(t) that vanishes at singularity, and radius proportional to L^\alpha, where \alpha=(4-\sigma)/(\sigma(d-1)). The blowup rate of these solutions is 1/(3+\alpha) for 4/d\le\sigma<4, and slightly faster than 1/4 for \sigma=4. These solutions are analogous to the ring-type solutions of the nonlinear Schrodinger equation. Comment: 21 pages, 13 figures, research article |
Databáze: | arXiv |
Externí odkaz: |