Ergodic Abelian actions with homogeneous spectrum
Autor: | Danilenko, Alexandre I., Solomko, Anton V. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | It is shown that for each $N>0$ and for a wide class of Abelian non-compact locally compact second countable groups $G$ including all infinite countable discrete ones and $\Bbb R^{d_1}\times\Bbb Z^{d_2}$ with $d_1,d_2\ge 0$, there exists a weakly mixing probability preserving $G$-action with a homogeneous spectrum of multiplicity $N$. |
Databáze: | arXiv |
Externí odkaz: |