Module amenability of the second dual and module topological center of semigroup algebras
Autor: | Amini, Massoud, Bodaghi, Abasalt, Bagha, Davood Ebrahimi |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $S$ be an inverse semigroup with an upward directed set of idempotents $E$. In this paper we define the module topological center of second dual of a Banach algebra which is a Banach module over another Banach algebra with compatible actions, and find it for $ \ell ^{1}(S)^{**}$ (as an $\ell^{1}(E)$-module). We also prove that $ \ell ^{1}(S)^{**}$ is $\ell^{1}(E)$-module amenable if and only if an appropriate group homomorphic image of $S$ is finite. Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |