Short geodesics in hyperbolic 3-manifolds
Autor: | Breslin, William |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | Algebr. Geom. Topol. 11 (2011) 735-745 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/agt.2011.11.735 |
Popis: | For each $g \ge 2$, we prove existence of a computable constant $\epsilon(g) > 0$ such that if $S$ is a strongly irreducible Heegaard surface of genus $g$ in a complete hyperbolic 3-manifold $M$ and $\gamma$ is a simple geodesic of length less than $\epsilon(g)$ in $M$, then $\gamma$ is isotopic into $S$. Comment: 12 pages, corrected Lemma 1 |
Databáze: | arXiv |
Externí odkaz: |