Short geodesics in hyperbolic 3-manifolds

Autor: Breslin, William
Rok vydání: 2009
Předmět:
Zdroj: Algebr. Geom. Topol. 11 (2011) 735-745
Druh dokumentu: Working Paper
DOI: 10.2140/agt.2011.11.735
Popis: For each $g \ge 2$, we prove existence of a computable constant $\epsilon(g) > 0$ such that if $S$ is a strongly irreducible Heegaard surface of genus $g$ in a complete hyperbolic 3-manifold $M$ and $\gamma$ is a simple geodesic of length less than $\epsilon(g)$ in $M$, then $\gamma$ is isotopic into $S$.
Comment: 12 pages, corrected Lemma 1
Databáze: arXiv