Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields

Autor: Gathen, Joachim von zur, Viola, Alfredo, Ziegler, Konstantin
Rok vydání: 2009
Předmět:
Zdroj: SIAM Journal on Discrete Mathematics 27 (2013) 855-891
Druh dokumentu: Working Paper
DOI: 10.1137/110854680
Popis: We present counting methods for some special classes of multivariate polynomials over a finite field, namely the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), and the relatively irreducible ones (irreducible but reducible over an extension field). One approach employs generating functions, another one uses a combinatorial method. They yield exact formulas and approximations with relative errors that essentially decrease exponentially in the input size.
Comment: to appear in SIAM Journal on Discrete Mathematics
Databáze: arXiv