Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields
Autor: | Gathen, Joachim von zur, Viola, Alfredo, Ziegler, Konstantin |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | SIAM Journal on Discrete Mathematics 27 (2013) 855-891 |
Druh dokumentu: | Working Paper |
DOI: | 10.1137/110854680 |
Popis: | We present counting methods for some special classes of multivariate polynomials over a finite field, namely the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), and the relatively irreducible ones (irreducible but reducible over an extension field). One approach employs generating functions, another one uses a combinatorial method. They yield exact formulas and approximations with relative errors that essentially decrease exponentially in the input size. Comment: to appear in SIAM Journal on Discrete Mathematics |
Databáze: | arXiv |
Externí odkaz: |