A Minimal Lamination with Cantor Set-Like Singularities
Autor: | Kleene, Stephen J. |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Given a compact closed subset $M$ of a line segment in $\mathbb{R}^3$, we construct a sequence of minimal surfaces $\Sigma_k$ embedded in a neighborhood $C$ of the line segment that converge smoothly to a limit lamination of $C$ away from $M$. Moreover, the curvature of this sequence blows up precisely on $M$, and the limit lamination has non-removable singularities precisely on the boundary of $M$. Comment: 15 pages, 3 figures, typos corrected |
Databáze: | arXiv |
Externí odkaz: |