Linear Weingarten surfaces foliated by circles in Minkowski space
Autor: | Kalkan, Ozgur Boyacioglu, López, Rafael, Saglam, Derya |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this work, we study spacelike surfaces in Minkowski space $E_1^3$ foliated by pieces of circles and that satisfy a linear Weingarten condition of type $a H+b K=c$, where $a,b$ and $c$ are constant and $H$ and $K$ denote the mean curvature and the Gauss curvature respectively. We show that such surfaces must be surfaces of revolution or surfaces with constant mean curvature H=0 or surfaces with constant Gauss curvature K=0. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |