A Wigner Surmise for Hermitian and Non-Hermitian Chiral Random Matrices
Autor: | Akemann, G., Bittner, E., Phillips, M. J., Shifrin, L. |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | Phys.Rev.E80:065201,2009 |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevE.80.065201 |
Popis: | We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral Random Matrix Theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large-N limit we find an excellent agreement, valid for a small number of exact zero-eigenvalues. New compact expressions are derived for real eigenvalues in the orthogonal and symplectic classes, and at intermediate non-Hermiticity for the unitary and symplectic classes. Such individual Dirac eigenvalue distributions are a useful tool in Lattice Gauge Theory and we illustrate this by showing that our new results can describe data from two-colour QCD simulations with chemical potential in the symplectic class. Comment: 4 pages, 5 figures |
Databáze: | arXiv |
Externí odkaz: |