A note on completeness in the theory of strongly clean rings
Autor: | Diesl, Alexander J., Dorsey, Thomas J. |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Many authors have investigated the behavior of strong cleanness under certain ring extensions. In this note, we prove that if $R$ is a ring which is complete with respect to an ideal $I$ and if $x$ is an element of $R$ whose image in $R/I$ is strongly $\pi$-regular, then $x$ is strongly clean in $R$. Comment: 5 pages |
Databáze: | arXiv |
Externí odkaz: |