The braid group surjects onto $G_2$ tensor space

Autor: Morrison, Scott
Rok vydání: 2009
Předmět:
Zdroj: Pacific Journal of Mathematics 249-1 (2011), 189--198
Druh dokumentu: Working Paper
DOI: 10.2140/pjm.2011.249.189
Popis: Let V be the 7-dimensional irreducible representation of the quantum group U_q(g_2). For each n, there is a map from the braid group B_n to the endomorphism algebra of the n-th tensor power of V, given by R-matrices. We can extend this linearly to a map on the braid group algebra. Lehrer and Zhang (MR2271576) prove this map is surjective, as a special case of a more general result. Using Kuperberg's spider for G_2 from arXiv:math.QA/9201302, we give an elementary diagrammatic proof of this result.
Comment: 9 pages
Databáze: arXiv