Gauduchon-Tod structures, Sim holonomy and De Sitter supergravity
Autor: | Grover, Jai, Gutowski, Jan B., Herdeiro, Carlos A. R., Meessen, Patrick, Palomo-Lozano, Alberto, Sabra, Wafic A. |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | JHEP 0907:069,2009 |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/1126-6708/2009/07/069 |
Popis: | Solutions of five-dimensional De Sitter supergravity admitting Killing spinors are considered, using spinorial geometry techniques. It is shown that the "null" solutions are defined in terms of a one parameter family of 3-dimensional constrained Einstein-Weyl spaces called Gauduchon-Tod structures. They admit a geodesic, expansion-free, twist-free and shear-free null vector field and therefore are a particular type of Kundt geometry. When the Gauduchon-Tod structure reduces to the 3-sphere, the null vector becomes recurrent, and therefore the holonomy is contained in Sim(3), the maximal proper subgroup of the Lorentz group SO(4,1). For these geometries, all scalar invariants built from the curvature are constant. Explicit examples are discussed. Comment: 1+21 pages, no figures; v2 minor changes, typos corrected, matches published version in JHEP |
Databáze: | arXiv |
Externí odkaz: |