Spectral Curves and Localization in Random Non-Hermitian Tridiagonal Matrices
Autor: | Molinari, L. G., Lacagnina, G. N. |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | J. Phys. A: Math. Theor. 42 (2009) 395204 (9pp.) |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/1751-8113/42/39/395204 |
Popis: | Eigenvalues and eigenvectors of non-Hermitian tridiagonal periodic random matrices are studied by means of the Hatano-Nelson deformation. The deformed spectrum is annular-shaped, with inner radius measured by the complex Thouless formula. The inner bounding circle and the annular halo are stuctures that correspond to the two-arc and wings observed by Hatano and Nelson in deformed Hermitian models, and are explained in terms of localization of eigenstates via a spectral duality and the Argument principle. Comment: 5 pages, 9 figures, typographical error corrected in references |
Databáze: | arXiv |
Externí odkaz: |