Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
Autor: | Viñales, A. D., Wang, K. G., Despósito, M. A. |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise is studied. Using Laplace analysis we derive exact expressions for the relaxation functions of the particle in terms of generalized Mittag-Leffler functions and its derivatives from a generalized Langevin equation. Our results show that the oscillator displays an anomalous diffusive behavior. In the strictly asymptotic limit, the dynamics of the harmonic oscillator corresponds to an oscillator driven by a noise with a pure power-law autocorrelation function. However, at short and intermediate times the dynamics has qualitative difference due to the presence of the characteristic time of the noise. Comment: 5 pages |
Databáze: | arXiv |
Externí odkaz: |