Which compacta are noncommutative ARs?
Autor: | Chigogidze, A., Dranishnikov, A. N. |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We give a short answer to the question in the title: {\em dendrits}. Precisely we show that the $C^{\ast}$-algebra $C(X)$ of all complex-valued continuous functions on a compactum $X$ is projective in the category ${\mathcal C}^{1}$ of all (not necessarily commutative) unital $C^{\ast}$-algebras if and only if $X$ is an absolute retract of dimension $\dim X \leq 1$ or, equivalently, that $X$ is a dendrit. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |