Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces
Autor: | Alexeev, Valery, Pardini, Rita |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We describe explicitly the geometric compactifications, obtained by adding slc surfaces $X$ with ample canonical class, for two connected components in the moduli space of surfaces of general type: Campedelli surfaces with $\pi_1(X)=\mathbb Z_2^3$ and Burniat surfaces with $K^2=6$. Comment: v.2: A completely rewritten version of the 2009 original. Much stronger results and new proofs. computations.sage contains computations for fans and polytopes |
Databáze: | arXiv |
Externí odkaz: |