Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces

Autor: Alexeev, Valery, Pardini, Rita
Rok vydání: 2009
Předmět:
Druh dokumentu: Working Paper
Popis: We describe explicitly the geometric compactifications, obtained by adding slc surfaces $X$ with ample canonical class, for two connected components in the moduli space of surfaces of general type: Campedelli surfaces with $\pi_1(X)=\mathbb Z_2^3$ and Burniat surfaces with $K^2=6$.
Comment: v.2: A completely rewritten version of the 2009 original. Much stronger results and new proofs. computations.sage contains computations for fans and polytopes
Databáze: arXiv