Bounds on the degree of APN polynomials The Case of $x^{-1}+g(x)$
Autor: | Leander, Gregor, Rodier, François |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that functions $f:\f{2^m} \to \f{2^m}$ of the form $f(x)=x^{-1}+g(x)$ where $g$ is any non-affine polynomial are APN on at most a finite number of fields $\f{2^m}$. Furthermore we prove that when the degree of $g$ is less then 7 such functions are APN only if $m \le 3$ where these functions are equivalent to $x^3$. |
Databáze: | arXiv |
Externí odkaz: |