Weak stability of Lagrangian solutions to the semigeostrophic equations

Autor: Faria, Josiane C. O., Filho, Milton C. Lopes, Lopes, Helena J. Nussenzveig
Rok vydání: 2009
Předmět:
Zdroj: Nonlinearity 22 (2009), 2521-2539
Druh dokumentu: Working Paper
DOI: 10.1088/0951-7715/22/10/011
Popis: In [1], Cullen and Feldman proved existence of Lagrangian solutions for the semigeostrophic system in physical variables with initial potential vorticity in $L^p$, $p>1$. Here, we show that a subsequence of the Lagrangian solutions corresponding to a strongly convergent sequence of initial potential vorticities in $L^1$ converges strongly in $L^q$, $q<\infty$, to a Lagrangian solution, in particular extending the existence result of Cullen and Feldman to the case $p=1$. We also present a counterexample for Lagrangian solutions corresponding to a sequence of initial potential vorticities converging in $\mathcal{BM}$. The analytical tools used include techniques from optimal transportation, Ambrosio's results on transport by $BV$ vector fields, and Orlicz spaces. [1] M. Cullen and M. Feldman, {\it Lagrangian solutions of semigeostrophic equations in physical space.} SIAM J. Math. Anal., {\bf 37} (2006), 1371--1395.
Comment: 19 pages
Databáze: arXiv