Nearly generalized Jordan derivations

Autor: Gordji, M. Eshaghi, Ghobadipour, N.
Rok vydání: 2008
Předmět:
Druh dokumentu: Working Paper
Popis: Let $A$ be an algebra and let $X$ be an $A$-bimodule. A $\Bbb C-$linear mapping $d:A \to X$ is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) $\delta:A \to X$ such that $d(a^2)=ad(a)+\delta(a)a$ for all $a \in A.$ The main purpose of this paper to prove the Hyers-Ulam-Rassias stability and superstability of the generalized Jordan derivations.
Databáze: arXiv