Nearly generalized Jordan derivations
Autor: | Gordji, M. Eshaghi, Ghobadipour, N. |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $A$ be an algebra and let $X$ be an $A$-bimodule. A $\Bbb C-$linear mapping $d:A \to X$ is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) $\delta:A \to X$ such that $d(a^2)=ad(a)+\delta(a)a$ for all $a \in A.$ The main purpose of this paper to prove the Hyers-Ulam-Rassias stability and superstability of the generalized Jordan derivations. |
Databáze: | arXiv |
Externí odkaz: |