Conformal Orthosymplectic Quantum Mechanics

Autor: Burkart, J., Waldron, A.
Rok vydání: 2008
Předmět:
Zdroj: Class.Quant.Grav.26:105017,2009
Druh dokumentu: Working Paper
DOI: 10.1088/0264-9381/26/10/105017
Popis: We present the most general curvature obstruction to the deformed parabolic orthosymplectic symmetry subalgebra of the supersymmetric quantum mechanical models recently developed to describe Lichnerowicz wave operators acting on arbitrary tensors and spinors. For geometries possessing a hypersurface-orthogonal homothetic conformal Killing vector we show that the parabolic subalgebra is enhanced to a (curvature-obstructed) orthosymplectic algebra. The new symmetries correspond to time-dependent conformal symmetries of the underlying particle model. We also comment on generalizations germane to three dimensions and new Chern--Simons-like particle models.
Comment: 27 pages LaTeX
Databáze: arXiv