Solitary Wave Solutions for the Nonlinear Dirac Equations
Autor: | Guan, Meijiao |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we prove the existence and local uniqueness of stationary states for the nonlinear Dirac equation \[ i \sum_{j=0}^{3} \ga^j \pd_j \psi - m\psi + F(\bar{\psi}\psi)\psi =0 \] where $ m >0$ and $ F(s) = |s|^{\theta}$ for $ 1\leq \theta < 2.$ More precisely we show that there exists $\e_0 > 0$ such that for $\omega \in(m - \e_0, m), $ there exists a solution $ \psi(t,x) = e^{-i\omega t}\phi_{\omega}(x), x_0 = t, x = (x_1, x_2, x_3),$ and the mapping from $ \omega $ to $ \phi_{\omega} $ is continuous. We prove this result by relating the stationary solutions to the ground states of nonlinear Schr\"{o}dinger equations. Comment: 18 pages |
Databáze: | arXiv |
Externí odkaz: |