On asymptotic dimension and a property of Nagata
Autor: | Higes, J., Mitrra, A. |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this note we prove that every metric space $(X, d)$ of asymptotic dimmension at most $n$ is coarsely equivalent to a metric space $(Y, D)$ that satisfies the following property of Nagata: For every $n+2$ points $y_1,..., y_{n+2}$ in $Y$ and for every $x$ in $Y$ there exist two different $i,j$ such that $D(y_i,y_j)\le D(x,y_i)$. This solves problem 1400 of the book Open problems in Topology II. Comment: 4 pages |
Databáze: | arXiv |
Externí odkaz: |