Mean Curvature Flow on Ricci Solitons

Autor: Tsatis, Efstratios
Rok vydání: 2008
Předmět:
Zdroj: J.Phys.A43:045202,2010
Druh dokumentu: Working Paper
DOI: 10.1088/1751-8113/43/4/045202
Popis: We study monotonic quantities in the context of combined geometric flows. In particular, focusing on Ricci solitons as the ambient space, we consider solutions of the heat type equation integrated over embedded submanifolds evolving by mean curvature flow and we study their monotonicity properties. This is part of an ongoing project with Magni and Mantegazzawhich will treat the case of non-solitonic backgrounds $\cite{a_14}$.
Comment: 19 pages
Databáze: arXiv