The mean curvature of cylindrically bounded submanifolds
Autor: | Alias, L. J., Bessa, G. Pacelli, Dajczer, M. |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Mathematische Annalen 345 (2009), 367--376. |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00208-009-0357-1 |
Popis: | We give an estimate of the mean curvature of a complete submanifold lying inside a closed cylinder $B(r)\times\R^{\ell}$ in a product Riemannian manifold $N^{n-\ell}\times\R^{\ell}$. It follows that a complete hypersurface of given constant mean curvature lying inside a closed circular cylinder in Euclidean space cannot be proper if the circular base is of sufficiently small radius. In particular, any possible counterexample to a conjecture of Calabion complete minimal hypersurfaces cannot be proper. As another application of our method, we derive a result about the stochastic incompleteness of submanifolds with sufficiently small mean curvature. Comment: First version (December 2008). Final version, including new title (February 2009). To appear in Mathematische Annalen |
Databáze: | arXiv |
Externí odkaz: |