$R$-polynomials of finite monoids of Lie type
Autor: | Aker, Kürşat, Can, Mahir Bilen, Taşkín, Müge |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper concerns the combinatorics of the orbit Hecke algebra associated with the orbit of a two sided Weyl group action on the Renner monoid of a finite monoid of Lie type, $M$. It is shown by Putcha in \cite{Putcha97} that the Kazhdan-Lusztig involution (\cite{KL79}) can be extended to the orbit Hecke algebra which enables one to define the $R$-polynomials of the intervals contained in a given orbit. Using the $R$-polynomials, we calculate the M\"obius function of the Bruhat-Chevalley ordering on the orbits. Furthermore, we provide a necessary condition for an interval contained in a given orbit to be isomorphic to an interval in some Weyl group. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |